MC9280 | DATA MINING AND DATA WAREHOUSING | LT P C |
3 0 0 3 | ||
UNIT I | 9 |
Data Warehousing and Business Analysis: - Data warehousing Components â"Building a
Data warehouse â" Mapping the Data Warehouse to a Multiprocessor Architecture â" DBMS Schemas for Decision Support â" Data Extraction, Cleanup, and Transformation Tools â"Metadata â" reporting â" Query tools and Applications â" Online Analytical Processing (OLAP) â" OLAP and Multidimensional Data Analysis.
UNIT IIÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 9
Data Mining: - Data Mining Functionalities â" Data Preprocessing â" Data Cleaning â" Data Integration and Transfor mation â" Data Reduction â" Data Discretization and Concept Hierarchy Generation.
Association Rule Mining: - Efficient and Scalable Frequent Item set Mining Methods â" Mining Various Kinds of Association Rules â" Association Mining to Correlation Analysis
â" Constraint-Based Association Mining.
UNIT IIIÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 9
Classification and Prediction: - Issues Regarding Classification and Prediction â" Classification by Decision Tree Introduction â" Bayesian Classification â" Rule Based Classification â" Classification by Back propagation â" Support Vector Machines â" Associative Classification â" Lazy Learners â" Other Classification Methods â" Prediction â" Accuracy a< /span>nd Error Measures â" Evaluating the Accuracy of a Classifier or Predictor â" Ensemble Methods â" Model Section.
UNIT IVÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 9
Cluster Analysis: - Types of Data in Cluster Analysis â" A Categorization of Major Clustering Methods â" Partitioning Methods â" Hierarchical methods â" Density-Based Methods â" Grid-Based Methods â" Model-Based Clustering Methods â" Clustering High- Dimens
UNIT VÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 9
Mining Object, Spatial, Multimedia, Text and Web Data:
Multidimensional Analysis and Descriptive Mining of Complex Data Objects â" Spatial
Data Mining â" Multimedia Data Mining â" Text Mining â" Mining the World Wide Web.
TOTAL : 45 PERIODS
REFERENCES
1. Â Jiawei Han and Micheline Kamber âData Mining Concepts and Techniquesâ Second
Edition,
2. Â Elsevier, Reprinted 2008.
3. Â Alex Berson and Stephen J. Smith âData Warehousing, Data Mining & OLAPâ, Tata
McGraw â" Hill Edition, Tenth Reprint 2007.
4. Â K.P. Soman, Shyam Diwakar and V. Ajay âInsight into Data mining Theory and
Practiceâ, Easter Economy Edition, Prentice Hall of India, 2006.
5.  G.  K.  Gupta  âIntroduction  to  Data  Mining  with  Case  Studiesâ,  Easter  Economy
Edition, Prentice Hall of India, 2006.
6. Â Pang-Ning Tan, Michael Steinbach and Vipin Kumar âIntroduction to Data Miningâ, Pearson Education, 2007.
0 comments:
Post a Comment