MC9294Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ARTIFICIAL INTELLIGENCEÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â LT P C
3 0 0 3
UNIT IÂ Â Â Â Â Â Â Â Â Â Â Â INTRODUCTIONÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 8
Intelligent Agents â" Agents and environments â" Good behavior â" The nature of environments â" Â structure of agents â" Problem Solving â" problem solving agents â" example problems â" searching for solutions â" uniformed search strategie s â" avoiding repeated states â" searching with partial information.
UNIT IIÂ Â Â Â Â Â Â Â Â Â Â SEARCHING TECHNIQUESÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 10
Informed search strategies â" heuristic function â" local search algorithms and optimistic problems â" local search in continuous spaces â" online search agents and unknown environments  â" Constraint satisfaction problems (CSP) â" Backtra cking search and Local  search   â"  Structure  of  problems  â"  Adversarial Search  â"  Games  â"  Optimal decisions in games â" Alpha â" Beta Pruning â" imperfect real-time decision â" games that include an element of chance.
UNIT IIIÂ Â Â Â Â Â Â Â Â Â KNOWLEDGE REPRESENTATIONÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 10
First  order  logic  -  syntax  and  semantics â"  Using  first  order  logic  â"  Knowledge engineering â"  Inference  â" prepositional versus first order logic â" unification and lifting â" forward chaining â" backward chaining â"  Resolution â" Knowledge representation â" Ontological Engineering â"  Categories and objects â" Actions â" Simulation a< span>nd events â" Mental events and mental objects.
UNIT IVÂ Â Â Â Â Â Â Â Â LEARNINGÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 9
Learning from observations â"Â Â forms of learning â" Inductive learning - Learning decision trees â"Â Â Ensemble lear ning â"Â Â Knowledge in learning â" Logical formulation of learning â" Explanation based learning â" Learning us< span>ing relevant information â" Inductive logic programming - Statistical learning methods â"Â Â Learning with comple
UNIT VÂ Â Â Â Â Â Â Â Â Â APPLICATIONSÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â 8
Communication â" Communication as action â" Formal grammar for a fragment of English
â" Syntactic analysis â" Augmented grammars â" Semantic interpretation â" Ambiguity and disambiguation  â"  Di scourse  understanding  â"  Grammar  induction  â"    Probabilistic
language processing â"Â Â Probabilistic language models â" Information retrieval â" Information Extraction â" M
TOTAL : 45 PERIODS REFERENCES
1. Â Stuart Russell, Peter Norvig, âArtificial Intelligence â" A Modern Approachâ, Second
Edition, Pearson Education / Prentice Hall of  India, 2004.
2. Â Nils J. Nilsson, âArtificial Intelligence: A new Synthesisâ, Harcourt Asia Pvt. Ltd.,
2000.
3. Â Elaine Rich and Kevin Knight, âArtificial Intelligenceâ, Second Edition, Tata McGraw
Hill, 2003.
4.  George  F.  Luger,  âArtificial  Intelligence-Structures  And  Strategies  For  Complex
Problem Solvingâ, Pearson Education / PHI, 2002.
0 comments:
Post a Comment